Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.154
Filtrar
1.
Sci Rep ; 14(1): 9056, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643191

RESUMO

The impact of evolving treatment regimens, airway clearance strategies, and antibiotic combinations on the incidence and prevalence of respiratory infection in cystic fibrosis (CF) in children and adolescents remains unclear. The incidence, prevalence, and prescription trends from 2002 to 2019 with 18,339 airway samples were analysed. Staphylococcus aureus [- 3.86% (95% CI - 5.28-2.43)] showed the largest annual decline in incidence, followed by Haemophilus influenzae [- 3.46% (95% CI - 4.95-1.96)] and Pseudomonas aeruginosa [- 2.80%95% CI (- 4.26-1.34)]. Non-tuberculous mycobacteria and Burkholderia cepacia showed a non-significant increase in incidence. A similar pattern of change in prevalence was observed. No change in trend was observed in infants < 2 years of age. The mean age of the first isolation of S. aureus (p < 0.001), P. aeruginosa (p < 0.001), H. influenza (p < 0.001), Serratia marcescens (p = 0.006) and Aspergillus fumigatus (p = 0.02) have increased. Nebulised amikacin (+ 3.09 ± 2.24 prescription/year, p = 0.003) and colistin (+ 1.95 ± 0.3 prescriptions/year, p = 0.032) were increasingly prescribed, while tobramycin (- 8.46 ± 4.7 prescriptions/year, p < 0.001) showed a decrease in prescription. Dornase alfa and hypertonic saline nebulisation prescription increased by 16.74 ± 4.1 prescriptions/year and 24 ± 4.6 prescriptions/year (p < 0.001). There is a shift in CF among respiratory pathogens and prescriptions which reflects the evolution of cystic fibrosis treatment strategies over time.


Assuntos
Fibrose Cística , Pneumonia , Infecções por Pseudomonas , Criança , Lactente , Humanos , Adolescente , Fibrose Cística/complicações , Fibrose Cística/epidemiologia , Fibrose Cística/microbiologia , Staphylococcus aureus , Sistema Respiratório/microbiologia , Antibacterianos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Pneumonia/tratamento farmacológico , Pseudomonas aeruginosa
2.
BMC Biol ; 22(1): 93, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654335

RESUMO

BACKGROUND: The human upper respiratory tract (URT) microbiome, like the gut microbiome, varies across individuals and between health and disease states. However, study-to-study heterogeneity in reported case-control results has made the identification of consistent and generalizable URT-disease associations difficult. RESULTS: In order to address this issue, we assembled 26 independent 16S rRNA gene amplicon sequencing data sets from case-control URT studies, with approximately 2-3 studies per respiratory condition and ten distinct conditions covering common chronic and acute respiratory diseases. We leveraged the healthy control data across studies to investigate URT associations with age, sex, and geographic location, in order to isolate these associations from health and disease states. CONCLUSIONS: We found several robust genus-level associations, across multiple independent studies, with either health or disease status. We identified disease associations specific to a particular respiratory condition and associations general to all conditions. Ultimately, we reveal robust associations between the URT microbiome, health, and disease, which hold across multiple studies and can help guide follow-up work on potential URT microbiome diagnostics and therapeutics.


Assuntos
Microbiota , RNA Ribossômico 16S , Sistema Respiratório , Humanos , Microbiota/genética , RNA Ribossômico 16S/genética , Sistema Respiratório/microbiologia , Doenças Respiratórias/microbiologia , Estudos de Casos e Controles , Masculino , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Feminino
3.
BMC Microbiol ; 24(1): 138, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658823

RESUMO

BACKGROUND: Co-infection with other pathogens in coronavirus disease 2019 (COVID-19) patients exacerbates disease severity and impacts patient prognosis. Clarifying the exact pathogens co-infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is premise of the precise treatment for COVID-19 patients. METHODS: Sputum samples were collected from 17 patients in the COVID-19 positive group and 18 patients in the COVID-19 negative group. DNA extraction was performed to obtain the total DNA. Sequencing analysis using 16S and ITS rRNA gene was carried out to analyze the composition of bacterial and fungal communities. Meanwhile, all the samples were inoculated for culture. RESULTS: We did not observe significant differences in bacterial composition between the COVID-19 positive and negative groups. However, a significantly higher abundance of Candida albicans was observed in the upper respiratory tract samples from the COVID-19 positive group compared to the COVID-19 negative group. Moreover, the Candida albicans strains isolated from COVID-19 positive group exhibited impaired secretion of aspartyl proteinases. CONCLUSION: COVID-19 positive patients demonstrate a notable increase in the abundance of Candida albicans, along with a decrease in the levels of aspartyl proteinases, indicating the alteration of microbiota composition of upper respiratory tract.


Assuntos
Bactérias , COVID-19 , Candida albicans , Microbiota , Sistema Respiratório , SARS-CoV-2 , Escarro , Humanos , COVID-19/microbiologia , COVID-19/virologia , Microbiota/genética , Masculino , Candida albicans/isolamento & purificação , Candida albicans/genética , Feminino , Escarro/microbiologia , Escarro/virologia , Pessoa de Meia-Idade , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Sistema Respiratório/microbiologia , Sistema Respiratório/virologia , Idoso , RNA Ribossômico 16S/genética , Adulto , Coinfecção/microbiologia , Coinfecção/virologia
4.
Microb Pathog ; 190: 106632, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537762

RESUMO

With the widespread introduction of the Hib conjugate vaccine, Nontypeable Haemophilus influenzae (NTHi) has emerged as the predominant strain globally. NTHi presents a significant challenge as a causative agent of chronic clinical infections due to its high rates of drug resistance and biofilm formation. While current research on NTHi biofilms in children has primarily focused on upper respiratory diseases, investigations into lower respiratory sources remain limited. In this study, we collected 54 clinical strains of lower respiratory tract origin from children. Molecular information and drug resistance features were obtained through whole gene sequencing and the disk diffusion method, respectively. Additionally, an in vitro biofilm model was established. All clinical strains were identified as NTHi and demonstrated the ability to form biofilms in vitro. Based on scanning electron microscopy and crystal violet staining, the strains were categorized into weak and strong biofilm-forming groups. We explored the correlation between biofilm formation ability and drug resistance patterns, as well as clinical characteristics. Stronger biofilm formation was associated with a longer cough duration and a higher proportion of abnormal lung imaging findings. Frequent intake of ß-lactam antibiotics might be associated with strong biofilm formation. While a complementary relationship between biofilm-forming capacity and drug resistance may exist, further comprehensive studies are warranted. This study confirms the in vitro biofilm formation of clinical NTHi strains and establishes correlations with clinical characteristics, offering valuable insights for combating NTHi infections.


Assuntos
Antibacterianos , Biofilmes , Infecções por Haemophilus , Haemophilus influenzae , Biofilmes/crescimento & desenvolvimento , Humanos , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/fisiologia , Haemophilus influenzae/isolamento & purificação , Haemophilus influenzae/genética , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/classificação , Antibacterianos/farmacologia , Pré-Escolar , Feminino , Masculino , Criança , Lactente , Testes de Sensibilidade Microbiana , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Microscopia Eletrônica de Varredura , Farmacorresistência Bacteriana , Sistema Respiratório/microbiologia , Sistema Respiratório/virologia
5.
Int. microbiol ; 27(1): 127-142, Feb. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-230249

RESUMO

Digestive and respiratory tracts are inhabited by rich bacterial communities that can vary between their different segments. In comparison with other bird taxa with developed caeca, parrots that lack caeca have relatively lower variability in intestinal morphology. Here, based on 16S rRNA metabarcoding, we describe variation in microbiota across different parts of parrot digestive and respiratory tracts both at interspecies and intraspecies levels. In domesticated budgerigar (Melopsittacus undulatus), we describe the bacterial variation across eight selected sections of respiratory and digestive tracts, and three non-destructively collected sample types (faeces, and cloacal and oral swabs). Our results show important microbiota divergence between the upper and lower digestive tract, but similarities between respiratory tract and crop, and also between different intestinal segments. Faecal samples appear to provide a better proxy for intestinal microbiota composition than the cloacal swabs. Oral swabs had a similar bacterial composition as the crop and trachea. For a subset of tissues, we confirmed the same pattern also in six different parrot species. Finally, using the faeces and oral swabs in budgerigars, we revealed high oral, but low faecal microbiota stability during a 3-week period mimicking pre-experiment acclimation. Our findings provide a basis essential for microbiota-related experimental planning and result generalisation in non-poultry birds.(AU)


Assuntos
Humanos , Animais , Papagaios/metabolismo , Trato Gastrointestinal/microbiologia , Microbiota , Bactérias/genética , RNA Ribossômico 16S/genética , Sistema Respiratório/microbiologia , Trato Gastrointestinal/metabolismo , Microbiologia , Técnicas Microbiológicas , Microbiota/genética , Periquitos
7.
Int Microbiol ; 27(1): 127-142, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37222909

RESUMO

Digestive and respiratory tracts are inhabited by rich bacterial communities that can vary between their different segments. In comparison with other bird taxa with developed caeca, parrots that lack caeca have relatively lower variability in intestinal morphology. Here, based on 16S rRNA metabarcoding, we describe variation in microbiota across different parts of parrot digestive and respiratory tracts both at interspecies and intraspecies levels. In domesticated budgerigar (Melopsittacus undulatus), we describe the bacterial variation across eight selected sections of respiratory and digestive tracts, and three non-destructively collected sample types (faeces, and cloacal and oral swabs). Our results show important microbiota divergence between the upper and lower digestive tract, but similarities between respiratory tract and crop, and also between different intestinal segments. Faecal samples appear to provide a better proxy for intestinal microbiota composition than the cloacal swabs. Oral swabs had a similar bacterial composition as the crop and trachea. For a subset of tissues, we confirmed the same pattern also in six different parrot species. Finally, using the faeces and oral swabs in budgerigars, we revealed high oral, but low faecal microbiota stability during a 3-week period mimicking pre-experiment acclimation. Our findings provide a basis essential for microbiota-related experimental planning and result generalisation in non-poultry birds.


Assuntos
Microbiota , Papagaios , Animais , Papagaios/genética , RNA Ribossômico 16S/genética , Sistema Respiratório/microbiologia , Bactérias/genética
8.
Pediatr Allergy Immunol Pulmonol ; 36(4): 133-142, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38134318

RESUMO

Background: Lower respiratory tract infections frequently complicate the care of children with chronic tracheostomies. Pediatric patients have significantly more risk to have tracheostomy infections than adults. Better understanding of modifiable risk factors for pulmonary exacerbations may improve the care of technology-dependent children. Methods: A retrospective single-center cohort study conducted on children with tracheostomy and chronic home ventilator to determine the incidence of pulmonary exacerbations leading to hospitalizations, emergency room (ER) visits, and antibiotic prescriptions. Oral and nebulized antibiotic prescriptions were collected and correlated to the type of exacerbation. Results: Gram-negative enteric organisms were the most common microbes seen in the lower airways, with Pseudomonas aeruginosa cultured in 86% of the subjects. P. aeruginosa presence predicted a 4-fold increased rate of pulmonary-related hospitalization. In pediatric patients with chronic respiratory failure, 64% of readmissions were pulmonary or tracheostomy related. When compared to standard care subjects on dual agent, alternating monthly nebulized antibiotic therapy (for chronic pseudomonas colonization) experienced 41% fewer hospitalizations [incidence rate ratios (IRR) 0.59 (0.18), P = 0.08], 46% fewer ER visits [IRR 0.56 (0.16), P = 0.04], and 41% fewer pulmonary-related ER visits [IRR 0.59 (0.19), P = 0.94]. Discussion: Children who require artificial airways are at an increased risk for bacterial bronchopulmonary infections. Most notable risk factors for hospitalization in tracheostomized children included neurologic impairment, dysphagia, aspiration, gastrotomy tube dependence, and gastroesophageal reflux disease. Pathogenic microbes such as P. aeruginosa species, certain gram-negative bacteria, candida, and yeast also predicted increased hospitalizations. Use of nebulized antibiotics prophylaxis in a subset of patients predicted lower rates of hospitalization or ER visits. More studies are needed to assess whether there is increased antimicrobial resistance with this strategy, and whether the benefits persist in the long-term nebulized antibiotics utilization.


Assuntos
Infecções Respiratórias , Traqueostomia , Adulto , Humanos , Criança , Estudos Retrospectivos , Traqueostomia/efeitos adversos , Estudos de Coortes , Sistema Respiratório/microbiologia , Antibacterianos/uso terapêutico , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/epidemiologia
10.
Future Microbiol ; 18: 607-623, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37477532

RESUMO

Publications addressing air pollution-induced human respiratory microbiome shifts are reviewed in this article. The healthy respiratory microbiota is characterized by a low density of bacteria, fungi and viruses with high diversity, and usually consists of Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, Fusobacteria, viruses and fungi. The air's microbiome is highly dependent on air pollution levels and is directly reflected within the human respiratory microbiome. In addition, pollutants indirectly modify the local environment in human respiratory organs by reducing antioxidant capacity, misbalancing proteolysis and modulating inflammation, all of which regulate local microbiomes. Improving air quality leads to more diverse and healthy microbiomes of the local air and, subsequently, residents' airways.


The community of bacteria, viruses and fungi in the human body, known as the microbiome, plays an important role in human health. These communities vary in different locations in the body, for example in the gut, airways and skin. The microbiome within our airways is affected by air pollution because pollutants cause changes in the microbiome that may result in illness. In this article we review the available information on the effect of air pollution on the airway microbiome. We conclude that improving air quality is important to promoting healthy microbiomes and general human health.


Assuntos
Poluição do Ar , Microbiota , Humanos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Sistema Respiratório/microbiologia , Bactérias/genética , Inflamação
11.
Front Cell Infect Microbiol ; 13: 1161203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180432

RESUMO

Objective: To investigate the distribution differences in the respiratory tract microbiota of AECOPD patients in different BMI groups and explore its guiding value for treatment. Methods: Sputum samples of thirty-eight AECOPD patients were collected. The patients were divided into low, normal and high BMI group. The sputum microbiota was sequenced by 16S rRNA detection technology, and the distribution of sputum microbiota was compared. Rarefaction curve, α-diversity, principal coordinate analysis (PCoA) and measurement of sputum microbiota abundance in each group were performed and analyzed by bioinformatics methods. Results: 1. The rarefaction curve in each BMI group reached a plateau. No significant differences were observed in the OTU total number or α-diversity index of microbiota in each group. PCoA showed significant differences in the distance matrix of sputum microbiota between the three groups, which was calculated by the Binary Jaccard and the Bray Curtis algorithm. 2. At the phylum level, most of the microbiota were Proteobacteria, Bacteroidetes Firmicutes, Actinobacteria, and Fusobacteria. At the genus level, most were Streptococcus, Prevotella, Haemophilus, Neisseria and Bacteroides. 3. At the phylum level, the abundance of Proteobacteria in the low group was significantly higher than that in normal and high BMI groups, the abundances of Firmicutes in the low and normal groups were significantly lower than that in high BMI groups. At the genus level, the abundance of Haemophilus in the low group was significantly higher than that in high BMI group, and the abundances of Streptococcus in the low and normal BMI groups were significantly lower than that in the high BMI group. Conclusions: 1. The sputum microbiota of AECOPD patients in different BMI groups covered almost all microbiota, and BMI had no significant association with total number of respiratory tract microbiota or α-diversity in AECOPD patients. However, there was a significant difference in the PCoA between different BMI groups. 2. The microbiota structure of AECOPD patients differed in different BMI groups. Gram-negative bacteria (G-) in the respiratory tract of patients predominated in the low BMI group, while gram-positive bacteria (G+) predominated in the high BMI group.


Assuntos
Microbiota , Doença Pulmonar Obstrutiva Crônica , Humanos , RNA Ribossômico 16S/genética , Índice de Massa Corporal , Sistema Respiratório/microbiologia , Microbiota/genética , Proteobactérias/genética , Streptococcus/genética , Firmicutes/genética
12.
Microbiol Spectr ; 11(3): e0405722, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199622

RESUMO

16S-based sequencing provides broader information on the respiratory microbial community than conventional culturing. However, it (often) lacks species- and strain-level information. To overcome this issue, we used 16S rRNA-based sequencing results from 246 nasopharyngeal samples obtained from 20 infants with cystic fibrosis (CF) and 43 healthy infants, which were all 0 to 6 months old, and compared them to both standard (blind) diagnostic culturing and a 16S-sequencing-informed "targeted" reculturing approach. Using routine culturing, we almost uniquely detected Moraxella catarrhalis, Staphylococcus aureus, and Haemophilus influenzae (42%, 38%, and 33% of samples, respectively). Using the targeted reculturing approach, we were able to reculture 47% of the top-5 operational taxonomical units (OTUs) in the sequencing profiles. In total, we identified 60 species from 30 genera with a median of 3 species per sample (range, 1 to 8). We also identified up to 10 species per identified genus. The success of reculturing the top-5 genera present from the sequencing profile depended on the genus. In the case of Corynebacterium being in the top 5, we recultured them in 79% of samples, whereas for Staphylococcus, this value was only 25%. The success of reculturing was also correlated with the relative abundance of those genera in the corresponding sequencing profile. In conclusion, revisiting samples using 16S-based sequencing profiles to guide a targeted culturing approach led to the detection of more potential pathogens per sample than conventional culturing and may therefore be useful in the identification and, consequently, treatment of bacteria considered relevant for the deterioration or exacerbation of disease in patients like those with CF. IMPORTANCE Early and effective treatment of pulmonary infections in cystic fibrosis is vital to prevent chronic lung damage. Although microbial diagnostics and treatment decisions are still based on conventional culture methods, research is gradually focusing more on microbiome and metagenomic-based approaches. This study compared the results of both methods and proposed a way to combine the best of both worlds. Many species can relatively easily be recultured based on the 16S-based sequencing profile, and it provides more in-depth information about the microbial composition of a sample than that obtained through routine (blind) diagnostic culturing. Still, well-known pathogens can be missed by both routine diagnostic culture methods as well as by targeted reculture methods, sometimes even when they are highly abundant, which may be a consequence of either sample storage conditions or antibiotic treatment at the time of sampling.


Assuntos
Fibrose Cística , Microbiota , Lactente , Humanos , Criança , Recém-Nascido , Fibrose Cística/diagnóstico , Fibrose Cística/microbiologia , RNA Ribossômico 16S/genética , Sistema Respiratório/microbiologia , Bactérias/genética , Microbiota/genética
13.
Virol J ; 20(1): 19, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726151

RESUMO

Several factors are associated with the severity of the respiratory disease caused by the influenza virus. Although viral factors are one of the most studied, in recent years the role of the microbiota and co-infections in severe and fatal outcomes has been recognized. However, most of the work has focused on the microbiota of the upper respiratory tract (URT), hindering potential insights from the lower respiratory tract (LRT) that may help to understand the role of the microbiota in Influenza disease. In this work, we characterized the microbiota of the LRT of patients with Influenza A using 16S rRNA sequencing. We tested if patients with different outcomes (deceased/recovered) and use of antibiotics differ in their microbial community composition. We found important differences in the diversity and composition of the microbiota between deceased and recovered patients. In particular, we detected a high abundance of opportunistic pathogens such as Granulicatella, in patients either deceased or with antibiotic treatment. Also, we found antibiotic treatment correlated with lower diversity of microbial communities and with lower probability of survival in Influenza A patients. Altogether, the loss of microbial diversity could generate a disequilibrium in the community, potentially compromising the immune response increasing viral infectivity, promoting the growth of potentially pathogenic bacteria that, together with altered biochemical parameters, can be leading to severe forms of the disease. Overall, the present study gives one of the first characterizations of the diversity and composition of microbial communities in the LRT of Influenza patients and its relationship with clinical variables and disease severity.


Assuntos
Influenza Humana , Microbiota , Síndrome do Desconforto Respiratório , Sistema Respiratório , Humanos , Influenza Humana/genética , Influenza Humana/microbiologia , Influenza Humana/virologia , Microbiota/genética , Nariz , Sistema Respiratório/microbiologia , RNA Ribossômico 16S/genética
14.
J Dairy Sci ; 106(4): 2750-2771, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36797182

RESUMO

The aim of this study was to evaluate the effect of therapeutically administered tildipirosin or florfenicol + flunixin meglumine for the treatment of bovine respiratory disease (BRD) accompanied by fever in calves before weaning compared with diseased and untreated animals. As specific objectives, we evaluated the composition of the bacterial microbiota of the upper respiratory tract (URT) and blood and health parameters of the animals. Preweaning Holstein female calves diagnosed with naturally acquired pneumonia were randomly assigned to one of the following experimental groups on the day of diagnosis (d 0): (1) TLD (n = 36): single subcutaneous injection with 4 mg/kg tildipirosin; (2) FLF (n = 33): single subcutaneous injection with an antimicrobial (40 mg/kg florfenicol) combined with a nonsteroidal anti-inflammatory drug (2.2 mg/kg flunixin meglumine); and (3) NEG (n = 35): no treatment within the first 5 d following enrollment. The NEG treatment group was closely monitored for 5 d, and calves were removed from the study following a standardized late treatment protocol, when necessary, to minimize health concerns. Healthy untreated calves (CTR; n = 31) were also selected for the study and used as controls. Blood samples used for biochemical analysis and nasopharyngeal swabs used for evaluation of URT microbiota were collected daily from d 0 until d 5 and then weekly until weaning. Next-generation sequencing of the 16S rRNA gene was used to assess the URT microbiota at the phylum and genus levels. Clinical signs associated with pneumonia and otitis media were assessed daily, as was the need for antibiotic interventions. Calves in the TLD and FLF groups had faster recovery from fever within the first 5 d after enrollment. In addition, antibiotic-treated calves reached the same serum haptoglobin levels as healthy calves on d 2 after diagnosis, whereas calves in the NEG group had higher haptoglobin levels than the CTR group until at least d 5 after BRD diagnosis. Calves in the TLD and FLF groups had a lower risk of treatment for pneumonia (FLF = 22.8%; TLD = 27.7%) from d 5 to weaning than calves in the NEG group (54.7%). Furthermore, FLF treatment had a significantly lower risk of nasal discharge, otitis media, and treatment failure compared with the NEG group, but did not differ from the TLD group. Differences in the composition of the URT microbiota were found between groups, and the genus Mycoplasma was the most abundant in samples collected from the URT of calves with and without pneumonia. Both drugs were effective in reducing the mean relative abundance (MRA) of important genera associated with pneumonia (Mannheimia and Pasteurella), although an increase in Mycoplasma MRA was observed for tildipirosin-treated calves. In conclusion, both drugs were effective in reducing the inflammatory signs of pneumonia and the need for antimicrobial treatment after enrollment compared with no treatment. In addition, both TLD and FLF were effective in reducing the MRA of important bacterial genera associated with pneumonia; however, TLD treatment was associated with increased Mycoplasma MRA compared with healthy and untreated calves.


Assuntos
Doenças dos Bovinos , Otite Média , Pneumonia , Animais , Bovinos , Feminino , Antibacterianos/uso terapêutico , RNA Ribossômico 16S/genética , Haptoglobinas , Bactérias , Pneumonia/veterinária , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/microbiologia , Otite Média/veterinária , Sistema Respiratório/microbiologia
15.
J Cyst Fibros ; 22(4): 636-643, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36822979

RESUMO

BACKGROUND: The respiratory tract fungal microbiome in cystic fibrosis (CF) has been understudied despite increasing recognition of fungal pathogens in CF lung disease. We sought to better understand the fungal communities in adults with CF, and to define relationships between fungal profiles and clinical characteristics. METHODS: We enrolled 66 adults with CF and collected expectorated sputum, spirometry, Cystic Fibrosis Questionnaire-revised, and clinical data. Fungi were molecularly profiled by sequencing of the internal transcribed spacer (ITS) region. Total fungal abundance was measured by quantitative PCR. Relative abundance and qPCR-corrected abundances were determined. Selective fungus culture identified cultivable fungi. Alpha diversity and beta diversity were measured and relationships with clinical parameters were interrogated. RESULTS: Median age was 29 years and median FEV1 percent predicted 58%. Members of the Candida genus were the most frequent dominant taxa in CF sputum. Apiotrichum, Trichosporon, Saccharomyces cerevisiae, and Scedosporium were present in high relative abundance in few samples; whereas, Aspergillus species were detected at low levels. Higher FEV1% predicted and CFTR modulator use were associated with greater alpha-diversity. Chronic azithromycin use was associated with lower alpha-diversity. Patients with acute pulmonary had distinct fungal community composition compared to clinically stable subjects. Differing yeast species were mainly responsible for the community differences. CONCLUSION: The respiratory tract fungal microbiome in adults with CF is associated with lung function, pulmonary exacerbation status, macrolide use, and CFTR modulator use. Future work to better understand fungal diversity in the CF airway and its impact on lung health is necessary.


Assuntos
Fibrose Cística , Micobioma , Humanos , Adulto , Fungos , Regulador de Condutância Transmembrana em Fibrose Cística , Sistema Respiratório/microbiologia , Escarro/microbiologia
16.
Clin Rev Allergy Immunol ; 64(2): 161-178, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35275333

RESUMO

The respiratory tract is home to a diverse microbial community whose influence on local and systemic immune responses is only beginning to be appreciated. Increasing reports have linked changes in this microbiome to a range of pulmonary and extrapulmonary disorders, including asthma, chronic obstructive pulmonary disease and rheumatoid arthritis. Central to many of these findings is the role of IL-17-type immunity as an important driver of inflammation. Despite the crucial role played by IL-17-mediated immune responses in protection against infection, overt Th17 cell responses have been implicated in the pathogenesis of several chronic inflammatory diseases. However, our knowledge of the influence of bacteria that commonly colonise the respiratory tract on IL-17-driven inflammatory responses remains sparse. In this article, we review the current knowledge on the role of specific members of the airway microbiota in the modulation of IL-17-type immunity and discuss how this line of research may support the testing of susceptible individuals and targeting of inflammation at its earliest stages in the hope of preventing the development of chronic disease.


Assuntos
Inflamação , Interleucina-17 , Pulmão , Microbiota , Humanos , Doença Crônica , Inflamação/imunologia , Interleucina-17/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Microbiota/imunologia , Sistema Respiratório/imunologia , Sistema Respiratório/microbiologia
17.
J Allergy Clin Immunol ; 151(4): 931-942, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36572355

RESUMO

BACKGROUND: Asthma and obesity are both complex conditions characterized by chronic inflammation, and obesity-related severe asthma has been associated with differences in the microbiome. However, whether the airway microbiome and microbiota-immune response relationships differ between obese persons with or without nonsevere asthma is unestablished. OBJECTIVE: We compared the airway microbiome and microbiota-immune mediator relationships between obese and nonobese subjects, with and without mild-moderate asthma. METHODS: We performed cross-sectional analyses of the airway (induced sputum) microbiome and cytokine profiles from blood and sputum using 16S ribosomal RNA gene and internal transcribed spacer region sequencing to profile bacteria and fungi, and multiplex immunoassays. Analysis tools included QIIME 2, linear discriminant analysis effect size (aka LEfSe), Piphillin, and Sparse inverse covariance estimation for ecological association inference (aka SPIEC-EASI). RESULTS: Obesity, irrespective of asthma status, was associated with significant differences in sputum bacterial community structure and composition (unweighted UniFrac permutational analysis of variance, P = .02), including a higher relative abundance of Prevotella, Gemella, and Streptococcus species. Among subjects with asthma, additional differences in sputum bacterial composition and fungal richness were identified between obese and nonobese individuals. Correlation network analyses demonstrated differences between obese and nonobese asthma in relationships between cytokine mediators, and these together with specific airway bacteria involving blood PAI-1, sputum IL-1ß, GM-CSF, IL-8, TNF-α, and several Prevotella species. CONCLUSION: Obesity itself is associated with an altered sputum microbiome, which further differs in those with mild-moderate asthma. The distinct differences in airway microbiota and immune marker relationships in obese asthma suggest potential involvement of airway microbes that may affect mechanisms or outcomes of obese asthma.


Assuntos
Asma , Microbiota , Humanos , Estudos Transversais , Sistema Respiratório/microbiologia , Microbiota/genética , Bactérias , Escarro
18.
Mol Microbiol ; 119(2): 174-190, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36577696

RESUMO

Bordetella species cause lower respiratory tract infections in mammals. B. pertussis and B. bronchiseptica are the causative agents of whooping cough and kennel cough, respectively. The current acellular vaccine for B. pertussis protects against disease but does not prevent transmission or colonization. Cases of pertussis are on the rise even in areas of high vaccination. The PlrSR two-component system, is required for persistence in the mouse lung. A partial plrS deletion strain and a plrS H521Q strain cannot survive past 3 days in the lung, suggesting PlrSR works in a phosphorylation-dependent mechanism. We characterized the biochemistry of B. bronchiseptica PlrSR and found that both proteins function as a canonical two-component system. His521 was essential and Glu522 was critical for PlrS autophosphorylation. Asn525 was essential for phosphatase activity. The PAS domain was critical for both PlrS autophosphorylation and phosphatase activities. PlrS could both phosphotransfer to and exert phosphatase activity toward PlrR. Unexpectedly, PlrR formed a tetramer when unphosphorylated and a dimer upon phosphorylation. Finally, we demonstrated the importance of PlrS phosphatase activity for persistence within the murine lung. By characterizing PlrSR we hope to guide future in vivo investigation for development of new vaccines and therapeutics.


Assuntos
Infecções por Bordetella , Bordetella bronchiseptica , Coqueluche , Camundongos , Animais , Fosforilação , Bordetella pertussis , Sistema Respiratório/microbiologia , Monoéster Fosfórico Hidrolases , Infecções por Bordetella/microbiologia , Mamíferos
19.
J Antimicrob Chemother ; 77(12): 3321-3330, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36227655

RESUMO

BACKGROUND: Pseudomonas aeruginosa infection is the leading cause of death among patients with cystic fibrosis (CF) and a common cause of difficult-to-treat hospital-acquired infections. P. aeruginosa uses several mechanisms to resist different antibiotic classes and an individual CF patient can harbour multiple resistance phenotypes. OBJECTIVES: To determine the rates and distribution of polyclonal heteroresistance (PHR) in P. aeruginosa by random, prospective evaluation of respiratory cultures from CF patients at a large referral centre over a 1 year period. METHODS: We obtained 28 unique sputum samples from 19 CF patients and took multiple isolates from each, even when morphologically similar, yielding 280 unique isolates. We performed antimicrobial susceptibility testing (AST) on all isolates and calculated PHR on the basis of variability in AST in a given sample. We then performed whole-genome sequencing on 134 isolates and used a machine-learning association model to interrogate phenotypic PHR from genomic data. RESULTS: PHR was identified in most sampled patients (n = 15/19; 79%). Importantly, resistant phenotypes were not detected by routine AST in 26% of patients (n = 5/19). The machine-learning model, using the extended sampling, identified at least one genetic variant associated with phenotypic resistance in 94.3% of isolates (n = 1392/1476). CONCLUSION: PHR is common among P. aeruginosa in the CF lung. While traditional microbiological methods often fail to detect resistant subpopulations, extended sampling of isolates and conventional AST identified PHR in most patients. A machine-learning tool successfully identified at least one resistance variant in almost all resistant isolates by leveraging this extended sampling and conventional AST.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Pseudomonas aeruginosa/genética , Fibrose Cística/microbiologia , Infecções por Pseudomonas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Sistema Respiratório/microbiologia , Testes de Sensibilidade Microbiana
20.
Allergy ; 77(11): 3362-3376, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35778780

RESUMO

BACKGROUND: In T2-mediated severe asthma, biologic therapies, such as mepolizumab, are increasingly used to control disease. Current biomarkers can indicate adequate suppression of T2 inflammation, but it is unclear whether they provide information about airway microbial composition. We investigated the relationships between current T2 biomarkers and microbial profiles, characteristics associated with a ProteobacteriaHIGH microbial profile and the effects of mepolizumab on airway ecology. METHODS: Microbiota sequencing was performed on sputum samples obtained at stable and exacerbation state from 140 subjects with severe asthma participating in two clinical trials. Inflammatory subgroups were compared on the basis of biomarkers, including FeNO and sputum and blood eosinophils. ProteobacteriaHIGH subjects were identified by Proteobacteria to Firmicutes ratio ≥0.485. Where paired sputum from stable visits was available, we compared microbial composition at baseline and following ≥12 weeks of mepolizumab. RESULTS: Microbial composition was not related to inflammatory subgroup based on sputum or blood eosinophils. FeNO ≥50 ppb when stable and at exacerbation indicated a group with less dispersed microbial profiles characterised by high alpha-diversity and low Proteobacteria. ProteobacteriaHIGH subjects were neutrophilic and had a longer time from asthma diagnosis than ProteobacteriaLOW subjects. In those studied, mepolizumab did not alter airway bacterial load or lead to increased Proteobacteria. CONCLUSION: High FeNO could indicate a subgroup of severe asthma less likely to benefit from antimicrobial strategies at exacerbation or in the context of poor control. Where FeNO is <50 ppb, biomarkers of microbial composition are required to identify those likely to respond to microbiome-directed strategies. We found no evidence that mepolizumab alters airway microbial composition.


Assuntos
Asma , Humanos , Asma/diagnóstico , Asma/tratamento farmacológico , Asma/microbiologia , Eosinófilos , Escarro/microbiologia , Sistema Respiratório/microbiologia , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...